министерство просвещения российской федерации

Министерство образования Оренбургской области Управление образования администрации г.Оренбурга МОАУ "СОШ № 78"

на заседании МО Заместитель директора Директор МОАУ руководитель МО по УВР «СОШ №78»

Константинова Л.М. Батакова Г.А. Егурнова В.В.

Приказ №1.1.9-416 от Приказ №1.1.9-416 от «О1» сентября 2023 г. «О1» сентября 2023 г. «О1» сентября 2023 г.

РАБОЧАЯ ПРОГРАММА

(ID 440415)

учебного предмета «Информатика. Базовый уровень»

для обучающихся 11 класса

город Оренбург 2023г.

ИНФОРМАТИКА 11 КЛАСС ФГОС

1. Планируемые результаты освоения учебного предмета

Федеральный государственный образовательный стандарт среднего общего образования устанавливает требования к результатам освоения обучающимися основной образовательной программы:

- личностным, включающим готовность и способность обучающихся к саморазвитию и личностному самоопределению, сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок, отражающих личностные и гражданские позиции в деятельности, правосознание, экологическую культуру, способность ставить цели и строить жизненные планы, способность к осознанию российской гражданской идентичности в поликультурном социуме;
- метапредметным, включающим освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в познавательной и социальной практике, самостоятельность в планировании и осуществлении учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, способность к построению индивидуальной образовательной траектории, владение навыками учебно-исследовательской, проектной и социальной деятельности;
- предметным, включающим освоенные обучающимися в ходе изучения учебного предмета умения, специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, владение научной терминологией, ключевыми понятиями, методами и приемами.

При этом, в начальной школе происходит формирование системы универсальных учебных действий (цель — учить ученика учиться); в основной — развитие (цель — учить ученика учиться в общении); в старшей — совершенствование (цель — учить ученика учиться самостоятельно).

К личностным результатам, на становление которых оказывает влияние изучение курса информатики, можно отнести:

- ориентация обучающихся на реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историкокультурной общности российского народа и судьбе России, патриотизм;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебноисследовательской, проектной и других видах деятельности.
- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству,
 владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;

- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- уважение ко всем формам собственности, готовность к защите своей собственности,
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем.

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

На становление данной группы универсальных учебных действий традиционно более всего ориентирован раздел курса «Алгоритмы и элементы программирования». А именно, выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

На формирование, развитие и совершенствование группы познавательных универсальных учебных действий более всего ориентированы такие тематические разделы курса как «Информация и информационные процессы», «Современные технологии создания и обработки информационных объектов», «Информационное моделирование», «Обработка информации в электронных таблицах», а также «Сетевые информационные технологии» и «Основы социальной информатики». При работе с соответствующими материалами курса выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия.

При изучении разделов «Информация и информационные процессы», «Сетевые информационные технологии» и «Основы социальной информатики» происходит становление ряда коммуникативных универсальных учебных действий. А именно, выпускники могут научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами),
 подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств.

Предметные результаты

В результате изучения учебного предмета «Информатика» на уровне среднего общего образования:

Выпускник на базовом уровне научится:

- определять информационный объем графических и звуковых данных при заданных условиях дискретизации;
- строить логическое выражение по заданной таблице истинности; решать несложные логические уравнения;
- находить оптимальный путь во взвешенном графе;
- определять результат выполнения алгоритма при заданных исходных данных; узнавать изученные алгоритмы обработки чисел и числовых последовательностей; создавать на их основе несложные программы анализа данных; читать и понимать несложные программы, написанные на выбранном для изучения универсальном алгоритмическом языке высокого уровня;
- выполнять пошагово (с использованием компьютера или вручную) несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных;
- создавать на алгоритмическом языке программы для решения типовых задач базового уровня из различных предметных областей с использованием основных алгоритмических конструкций;
 - использовать готовые прикладные компьютерные программы в соответствии с типом решаемых задач и по выбранной специализации;
 - понимать и использовать основные понятия, связанные со сложностью вычислений (время работы, размер используемой памяти);
- использовать компьютерно-математические модели для анализа соответствующих объектов и процессов, в том числе оценивать числовые параметры моделируемых объектов и процессов, а также интерпретировать результаты, получаемые в ходе моделирования реальных процессов; представлять результаты математического моделирования в наглядном виде, готовить полученные данные для публикации;
- аргументировать выбор программного обеспечения и технических средств ИКТ для решения профессиональных и учебных задач, используя знания о принципах построения персонального компьютера и классификации его программного обеспечения;
 - использовать электронные таблицы для выполнения учебных заданий из различных предметных областей;
- использовать табличные (реляционные) базы данных, в частности составлять запросы в базах данных (в том числе вычисляемые запросы), выполнять сортировку и поиск записей в БД; описывать базы данных и средства доступа к ним; наполнять разработанную базу данных;
- создавать структурированные текстовые документы и демонстрационные материалы с использованием возможностей современных программных средств;
 - применять антивирусные программы для обеспечения стабильной работы технических средств ИКТ;
- соблюдать санитарно-гигиенические требования при работе за персональным компьютером в соответствии с нормами действующих СанПиН. Выпускник на базовом уровне получит возможность научиться:
- выполнять эквивалентные преобразования логических выражений, используя законы алгебры логики, в том числе и при составлении поисковых запросов;
- переводить заданное натуральное число из двоичной записи в восьмеричную и шестнадцатеричную и обратно; сравнивать, складывать и вычитать числа, записанные в двоичной, восьмеричной и шестнадцатеричной системах счисления;
 - использовать знания о графах, деревьях и списках при описании реальных объектов и процессов;

- строить неравномерные коды, допускающие однозначное декодирование сообщений, используя условие Фано; использовать знания о кодах, которые позволяют обнаруживать ошибки при передаче данных, а также о помехоустойчивых кодах;
- понимать важность дискретизации данных; использовать знания о постановках задач поиска и сортировки; их роли при решении задач анализа данных;
- использовать навыки и опыт разработки программ в выбранной среде программирования, включая тестирование и отладку программ; использовать основные управляющие конструкции последовательного программирования и библиотеки прикладных программ; выполнять созданные программы;
- разрабатывать и использовать компьютерно-математические модели; оценивать числовые параметры моделируемых объектов и процессов; интерпретировать результаты, получаемые в ходе моделирования реальных процессов; анализировать готовые модели на предмет соответствия реальному объекту или процессу;
- применять базы данных и справочные системы при решении задач, возникающих в ходе учебной деятельности и вне ее; создавать учебные многотабличные базы данных;
 - классифицировать программное обеспечение в соответствии с кругом выполняемых задач;
- понимать основные принципы устройства современного компьютера и мобильных электронных устройств; использовать правила безопасной и экономичной работы с компьютерами и мобильными устройствами;
- понимать общие принципы разработки и функционирования интернет- приложений; создавать веб-страницы; использовать принципы обеспечения информационной безопасности, способы и средства обеспечения надежного функционирования средств ИКТ;
 - критически оценивать информацию, полученную из сети Интернет.

2. Содержание учебного предмета курса информатики и ИКТ

11 класс

Общее число часов – 34ч.

1. Обработка информации в электронных таблицах (6 часов)

Введение. Техника безопасности. Электронные (динамические) таблицы. Математическое моделирование. Примеры использования динамических (электронных) таблиц на практике (в том числе — в задачах математического моделирования). Представление результатов моделирования в виде, удобном для восприятия человеком. Графическое представление данных (схемы, таблицы, графики). Практическая работа с компьютерной моделью по выбранной теме. Анализ достоверности (правдоподобия) результатов экспериментов. Использование сред имитационного моделирования (виртуальных лабораторий) для проведения компьютерного эксперимента в учебной деятельности.

Контрольная работа по теме «Обработка информации в электронных таблицах».

2. Алгоритмы и элементы программирования (11 часов)

Алгоритмы и элементы программирования. Составление алгоритмов и их программная реализация. Алгоритмические конструкции. Подпрограммы. Рекурсивные алгоритмы. Табличные величины (массивы). Запись алгоритмических конструкций в выбранном языке программирования. Этапы решения задач на компьютере. Разработка и программная реализация алгоритмов решения типовых задач базового уровня из различных предметных областей. Определение возможных результатов работы простейших алгоритмов управления исполнителями и

вычислительных алгоритмов. Определение исходных данных, при которых алгоритм может дать требуемый результат. Анализ алгоритмов. Сложность вычисления: количество выполненных операций, размер используемой памяти; зависимость вычислений от размера исходных данных. Операторы языка программирования, основные конструкции языка программирования. Типы и структуры данных. Кодирование базовых алгоритмических конструкций на выбранном языке программирования. Интегрированная среда разработки программ на выбранном языке программирования. Интерфейс выбранной среды. Составление алгоритмов и программ в выбранной среде программирования. Приемы отладки программ. Проверка работоспособности программ с использованием трассировочных таблиц. Примеры задач: - алгоритмы нахождения наибольшего (или наименьшего) из двух, трех, четырех заданных чисел без использования массивов и циклов, а также сумм (или произведений) элементов конечной числовой последовательности (или массива); - алгоритмы анализа записей чисел в позиционной системе счисления; - алгоритмы решения задач методом перебора (поиск НОД данного натурального числа, проверка числа на простоту и т.д.). Примеры задач: - алгоритмы работы с элементами массива с однократным просмотром массива: линейный поиск элемента, вставка и удаление элементов в массиве, перестановка элементов данного массива в обратном порядке, суммирование элементов массива, проверка соответствия элементов массива некоторому условию, нахождение второго по величине наибольшего (или наименьшего) значения. Алгоритмы редактирования текстов (замена символа/фрагмента, удаление и вставка символа/фрагмента, поиск вхождения заданного образца). Постановка задачи сортировки.

Контрольная работа за 1 полугодие (промежуточная аттестация).

3. Информационное моделирование (8 часов)

Дискретные объекты. Использование графов, деревьев, списков при описании объектов и процессов окружающего мира. Бинарное дерево. Решение алгоритмических задач, связанных с анализом графов (примеры: построения оптимального пути между вершинами ориентированного ациклического графа; определения количества различных путей между вершинами). 3D-моделирование. Принципы построения и редактирования трехмерных моделей. Сеточные модели. Материалы. Моделирование источников освещения. Камеры. Аддитивные технологии (3D-принтеры). Автоматизированное проектирование. Представление о системах автоматизированного проектирования. Системы автоматизированного проектирования. Создание чертежей типовых деталей и объектов. Базы данных. Реляционные (табличные) базы данных. Таблица – представление сведений об однотипных объектах. Поле, запись. Ключевые поля таблицы. Связи между таблицами. Схема данных. Поиск и выбор в базах данных. Сортировка данных. Создание, ведение и использование баз данных при решении учебных и практических задач.

Контрольная работа по теме «Информационное моделирование»

4. Сетевые информационные технологии (5 часов)

Информационно-коммуникационные технологии. Компьютерные сети. Принципы построения компьютерных сетей. Сетевые протоколы. Интернет. Адресация в сети Интернет. Система доменных имен. Браузеры. Аппаратные компоненты компьютерных сетей. Работа в информационном пространстве. Веб-сайт. Страница. Взаимодействие веб-страницы с сервером. Динамические страницы. Разработка интернет-приложений (сайты). Сетевое хранение данных. Облачные сервисы. Деятельность в сети Интернет. Расширенный поиск информации в сети Интернет. Использование языков построения запросов. Другие виды деятельности в сети Интернет. Геолокационные сервисы реального времени (локация мобильных телефонов, определение загруженности автомагистралей и т.п.); интернет-торговля; бронирование билетов и гостиниц и т.п.

Контрольная работа по теме «Сетевые информационные технологии»

5. Основы социальной информатики (3 часа)

Социальная информатика. Социальные сети – организация коллективного взаимодействия и обмена данными. Сетевой этикет: правила поведения в киберпространстве. Проблема подлинности полученной информации. Информационная культура. Государственные электронные сервисы и услуги. Мобильные приложения. Открытые образовательные ресурсы. Средства защиты информации в автоматизированных информационных системах (АИС), компьютерных сетях и компьютерах. Общие проблемы защиты информации и информационной безопасности АИС. Электронная подпись, сертифицированные сайты и документы. Информационная безопасность. Техногенные и экономические угрозы, связанные с использованием ИКТ. Правовое обеспечение информационной безопасности.

6. Итоговая контрольная работа (1 час)

Итоговая контрольная работа (промежуточная аттестация).

3. Тематическое планирование, в том числе с учетом рабочей программы воспитания с указанием количества часов, отводимых на освоение каждой темы

11 класс

$N_{\underline{0}}$	Тема урока	Количество часов	Дата по плану	Фактическая
урока				дата
	1. Обработка информации в электронных таб.	пицах (6 часов)		
1.	Введение. Техника безопасности. Электронные (динамические) таблицы.	1	01.09.23	
	Математическое моделирование.			
2.	Примеры использования динамических (электронных) таблиц на практике (в том	1	08.09.23	
	числе – в задачах математического моделирования).			
3.	Входная диагностика.	1	15.09.23	
4.	Представление результатов моделирования в виде, удобном для восприятия	1	22.09.23	
	человеком. Графическое представление данных (схемы, таблицы, графики).			
	Практическая работа с компьютерной моделью по выбранной теме.			
5.	Анализ достоверности (правдоподобия) результатов экспериментов. Использование	1	29.09.23	
	сред имитационного моделирования (виртуальных лабораторий) для проведения			
	компьютерного эксперимента в учебной деятельности.			
6.	Контрольная работа по теме «Обработка информации в электронных	1	06.10.23	
	таблицах».			
	2. Алгоритмы и элементы программирован	ия (11 часов)		
7.	Алгоритмы и элементы программирования. Составление алгоритмов и их	1	13.10.23	
	программная реализация.			
8.	Алгоритмические конструкции. Подпрограммы. Рекурсивные алгоритмы.	1	20.10.23	
	Табличные величины (массивы).			
9.	Запись алгоритмических конструкций в выбранном языке программирования.	1	27.10.23	
	Этапы решения задач на компьютере. Разработка и программная реализация			

	алгоритмов решения типовых задач базового уровня из различных предметных			
	областей.			
10.	Определение возможных результатов работы простейших алгоритмов управления	1	10.11.23	
	исполнителями и вычислительных алгоритмов. Определение исходных данных, при			
	которых алгоритм может дать требуемый результат.			
11.	Анализ алгоритмов. Сложность вычисления: количество выполненных операций,	1	17.11.23	
	размер используемой памяти; зависимость вычислений от размера исходных			
	данных.			
12.	Операторы языка программирования, основные конструкции языка	1	24.11.23	
	программирования. Типы и структуры данных. Кодирование базовых			
	алгоритмических конструкций на выбранном языке программирования.			
13.	Интегрированная среда разработки программ на выбранном языке	1	01.12.23	
ı	программирования. Интерфейс выбранной среды. Составление алгоритмов и			
	программ в выбранной среде программирования. Приемы отладки программ.			
4.4	Проверка работоспособности программ с использованием трассировочных таблиц.		00.10.00	
14.	Контрольная работа за 1 полугодие (промежуточная аттестация).	1	08.12.23	
15.	Примеры задач:	1	15.12.23	
	– алгоритмы нахождения наибольшего (или наименьшего) из двух, трех,			
	четырех заданных чисел без использования массивов и циклов, а также сумм (или			
	произведений) элементов конечной числовой последовательности (или массива);			
	 алгоритмы анализа записей чисел в позиционной системе счисления; 			
	– алгоритмы решения задач методом перебора (поиск НОД данного			
	натурального числа, проверка числа на простоту и т.д.).			
16.	Примеры задач:	1	22.12.23	
	– алгоритмы работы с элементами массива с однократным просмотром			
	массива: линейный поиск элемента, вставка и удаление элементов в массиве,			
	перестановка элементов данного массива в обратном порядке, суммирование			
	элементов массива, проверка соответствия элементов массива некоторому условию,			
17	нахождение второго по величине наибольшего (или наименьшего) значения.	1	20.12.22	
17.	Алгоритмы редактирования текстов (замена символа/фрагмента, удаление и вставка	1	29.12.23	
	символа/фрагмента, поиск вхождения заданного образца). Постановка задачи			
	сортировки. 3. Информационное моделирование (8)	насар)		
18.	Дискретные объекты. Использование графов, деревьев, списков при описании	1	12.01.24	
10.	объектов и процессов окружающего мира. Бинарное дерево.	1	12.01.21	
19.	Решение алгоритмических задач, связанных с анализом графов (примеры:	1	19.01.24	
	построения оптимального пути между вершинами ориентированного ациклического		17.01.21	
	графа; определения количества различных путей между вершинами).			
	1 1 1 7 1 7 7	L		

20.	3D-моделирование. Принципы построения и редактирования трехмерных моделей.	1	26.01.24	
	Сеточные модели. Материалы. Моделирование источников освещения. Камеры.			
	Аддитивные технологии (3D-принтеры).			
21.	Автоматизированное проектирование. Представление о системах	1	02.02.24	
	автоматизированного проектирования. Системы автоматизированного			
	проектирования. Создание чертежей типовых деталей и объектов.			
22.	Базы данных. Реляционные (табличные) базы данных. Таблица – представление	1	09.02.24	
	сведений об однотипных объектах. Поле, запись. Ключевые поля таблицы.			
23.	Связи между таблицами. Схема данных. Поиск и выбор в базах данных. Сортировка данных.	1	16.02.24	
24.	Создание, ведение и использование баз данных при решении учебных и	1	01.03.24	
	практических задач.			
25.	Контрольная работа по теме «Информационное моделирование»	1	15.03.24	
	4. Сетевые информационные технологии	(5 часов)		
26.	Информационно-коммуникационные технологии. Компьютерные сети. Принципы	1	22.03.24	
	построения компьютерных сетей. Сетевые протоколы. Интернет. Адресация в сети			
	Интернет. Система доменных имен. Браузеры. Аппаратные компоненты			
25	компьютерных сетей.	4	07.04.04	
27.	Работа в информационном пространстве. Веб-сайт. Страница. Взаимодействие веб-		05.04.24	
	страницы с сервером. Динамические страницы. Разработка интернет-приложений			
20	(сайты). Сетевое хранение данных. Облачные сервисы.	1	12.04.24	
28.	Деятельность в сети Интернет. Расширенный поиск информации в сети Интернет.	1	12.04.24	
20	Использование языков построения запросов.	1	10.04.24	
29.	Другие виды деятельности в сети Интернет. Геолокационные сервисы реального	1	19.04.24	
	времени (локация мобильных телефонов, определение загруженности			
20	автомагистралей и т.п.); интернет-торговля; бронирование билетов и гостиниц и т.п.	1	26.04.24	
30.	Контрольная работа по теме «Сетевые информационные технологии»	1	20.04.24	
2.1	5. Основы социальной информатики (3 часа)		
31.	Социальная информатика. Социальные сети – организация коллективного	1	03.05.24	
	взаимодействия и обмена данными. Сетевой этикет: правила поведения в			
	киберпространстве. Проблема подлинности полученной информации.			
	Информационная культура. Государственные электронные сервисы и услуги.			
22	Мобильные приложения. Открытые образовательные ресурсы.	1	10.05.24	
32.	Средства защиты информации в автоматизированных информационных системах		10.05.24	
	(АИС), компьютерных сетях и компьютерах. Общие проблемы защиты информации			
	и информационной безопасности АИС. Электронная подпись, сертифицированные			
	сайты и документы.			

33.	Информационная безопасность. Техногенные и экономические угрозы, связанные с использованием ИКТ. Правовое обеспечение информационной безопасности.	1	17.05.24		
6. Итоговая контрольная работа (1 час)					
34.	Итоговая контрольная работа (промежуточная аттестация).	1	24.05.24		

4. Техническое обеспечение образовательного процесса

Помещение кабинета информатики, его оборудование (мебель и средства ИКТ) должны удовлетворять требованиям действующих Санитарноэпидемиологических правил и нормативов.

В кабинете информатики должны быть оборудованы не менее одного рабочего места преподавателя и 12—15 рабочих мест учащихся, снабженных стандартным комплектом: системный блок, монитор, устройства ввода текстовой информации и манипулирования экранными объектами (клавиатура и мышь), привод для чтения и записи компакт-дисков, аудио/видео входы/выходы. При этом основная конфигурация компьютера должна обеспечивать пользователю возможность работы с мультимедийным контентом: воспроизведение видеоизображений, качественный стереозвук в наушниках, речевой ввод с микрофона и др. Должно быть обеспечено подключение компьютеров к внутришкольной сети и выход в Интернет, при этом возможно использование участков беспроводной сети. Компьютерное оборудование может быть представлено как в стационарном исполнении, так и в виде переносных компьютеров. Возможна реализация компьютерного класса с использованием сервера и «тонкого клиента».

Кабинет информатики комплектуется следующим периферийным оборудованием:

- принтер (черно-белой печати, формата А4);
- принтер (цветной печати, формата А4);
- мультимедийный проектор (рекомендуется консольное крепление над экраном или потолочное крепление), подсоединяемый к компьютеру преподавателя;
- экран (на штативе или настенный) или интерактивная доска;
- устройства для ввода визуальной информации (сканер, цифровой фотоаппарат, web-камера и пр.);
- управляемые компьютером устройства, дающие учащимся возможность освоить простейшие принципы и технологии автоматического управления (обратная связь и т. д.);
- акустические колонки в составе рабочего места преподавателя; оборудование, обеспечивающее подключение к сети Интернет (комплект оборудования для подключения к сети Интернет, сервер).

Компьютерное оборудование может использовать различные операционные системы (в том числе семейств Windows, Linux, Mac OS). Все программные средства, устанавливаемые на компьютерах в кабинете информатики, должны быть лицензированы для использования на необходимом числе рабочих мест.

Для освоения основного содержания учебного предмета «Информатика» необходимо наличие следующего программного обеспечения:

- операционная система;
- файловый менеджер (в составе операционной системы или др.);
- почтовый клиент (в составе операционных систем или др.);
- браузер (в составе операционных систем или др.);
- мультимедиа проигрыватель (в составе операционной си-стемы или др.);
- антивирусная программа;
- программа-архиватор;
- программа интерактивного общения;
- клавиатурный тренажер;
- виртуальные компьютерные лаборатории;
- интегрированное офисное приложение, включающее текстовый редактор, программу разработки презентаций, систему управления базами данных, электронные таблицы;
- растровый и векторный графические редакторы;
- звуковой редактор;
- система автоматизированного проектирования;
- система программирования;
- геоинформационная система;
- редактор web-страниц.
 - Необходимо постоянное обновление библиотечного фонда (книгопечатной продукции) кабинета информатики, который должен включать:
- нормативные документы (методические письма Министерства образования и науки РФ, сборники программ по информатике и пр.);
- учебно-методическую литературу (учебники, рабочие тетради, методические пособия, сборники задач и практикумы, сборники тестовых заданий для тематического и итогового контроля и пр.);
- научную литературу области «Информатика» (справочники, энциклопедии и пр.);

• периодические издания.

Комплект демонстрационных настенных пособий в обязательном порядке должен включать плакат «Организация рабочего места и техника безопасности». Комплекты демонстрационных наглядных пособий (плакатов, таблиц, схем), отражающих основное содержание учебного предмета «Информатика», должны быть представлены как в виде настенных полиграфических изданий, так и в электронном виде (например, в виде набора слайдов мультимедийной презентации).

5. Оценочные материалы

11 класс

№	Диагностический и практический материал	Дата	
	(контрольные работы, экскурсии, практические работы, тесты, диагностические работы и т.д.)	проведения	
1.	Входная диагностика	15.09.23	
2.	Контрольная работа по теме «Обработка информации в электронных таблицах».	06.10.23	
3.	Контрольная работа за 1 полугодие (промежуточная аттестация).	08.12.23	
4.	Контрольная работа по теме «Информационное моделирование»	15.03.24	
5.	Контрольная работа по теме «Сетевые информационные технологии»	26.04.24	
6.	Итоговая контрольная работа (промежуточная аттестация).	24.05.24	

Способы контроля и оценивания образовательных достижений

Тематический контроль осуществляется по завершении крупного блока (темы). Он позволяет оценить знания и умения учащихся, полученные в ходе достаточно продолжительного периода работы. *Итоговый* контроль осуществляется по завершении каждого года обучения. В качестве одной из основных форм контроля мы рассматриваем тестирование.

Для того чтобы настроить школьников на вдумчивую работу с тестами, важно им объяснить правила, которых мы рекомендуем придерживаться при оценивании:

- за каждый правильный ответ начисляется 1 балл;
- за каждый ошибочный ответ начисляется штраф в 1 балл;
- за вопрос, оставленный без ответа (пропущенный вопрос), ничего не начисляется.

Такой подход позволяет добиться вдумчивого отношения к тестированию, позволяет сформировать у школьников навыки самооценки и ответственного отношения к собственному выбору. Тем не менее, учитель может отказаться от начисления штрафных баллов, особенно на начальном этапе тестирования.

При выставлении оценок желательно придерживаться следующих общепринятых соотношений:

- 50-70% «3»;
- 71-85% «4»;
- 86-100% «5».

По усмотрению учителя эти требования могут быть снижены. Особенно внимательно следует относиться к «пограничным» ситуациям, когда один балл определяет «судьбу» оценки, а иногда и ученика. В таких случаях следует внимательно проанализировать ошибочные ответы и, по возможности, принять решение в пользу ученика. Важно создать обстановку взаимопонимания и сотрудничества, сняв излишнее эмоциональное напряжение, возникающее во время тестирования.

Компьютерное тестирование интересно детям, а учителя оно освобождает от необходимости проверки детских работ. Тем не менее, компьютерному тестированию должно предшествовать тестирование «традиционное» – с бланками на печатной основе, работа с которыми позволяет учащимся более полно понять новую для них форму учебной деятельности. При правильном подходе к организации тестирования, как правило, в дальнейшем эта форма контроля уже не вызывает у школьников особых затруднений.

Сегодня все чаще происходит смещение акцента с того, что учащийся не знает и не умеет, на то, что он знает и умеет по данной теме и данному предмету; интеграция количественной и качественной оценок; перенос акцента с оценки на самооценку. В этой связи большие возможности имеет портфолио, под которым подразумевается коллекция работ учащегося, демонстрирующая его усилия, прогресс или достижения в определенной области. На уроке информатики в качестве портфолио естественным образом выступает личная файловая папка, содержащая все работы компьютерного практикума, выполненные учеником в течение учебного года или даже нескольких лет обучения.

Критерий оценки устного ответа

Отметка «**5**»: ответ полный и правильный на основании изученных теорий; материал изложен в определенной логической последовательности, литературным языком: ответ самостоятельный.

Отметка «**4**»: ответ полный и правильный на основании изученных теорий; материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию учителя.

Отметка «3»: ответ полный, но при этом допущена существенная ошибка, или неполный, несвязный.

Отметка «2»: при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не смог исправить при наводящих вопросах учителя.

Отметка «1»: отсутствие ответа.

Критерий оценки практического задания

Отметка «5»: 1) работа выполнена полностью и правильно; сделаны правильные выводы; 2) работа выполнена по плану с учетом техники безопасности.

Отметка «4»: работа выполнена правильно с учетом 2-3 несущественных ошибок исправленных самостоятельно по требованию учителя.

Отметка «3»: работа выполнена правильно не менее чем на половину или допущена существенная ошибка.

Отметка «2»: допущены две (и более) существенные ошибки в ходе работы, которые учащийся не может исправить даже по требованию учителя.

Отметка «1»: работа не выполнена.